library(tidyverse)
library(easystats)
library(rstanarm)
data("penguins", package = "palmerpenguins")
penguins-stan-05a
Aufgabe
Wir untersuchen Einflussfaktoren bzw. Prädiktoren auf das Körpergewicht von Pinguinen. In dieser Aufgabe untersuchen wir den Zusammenhang von Schnabellänge (als UV) und Körpergewicht (als AV).
Aufgabe: Wie breit ist das 95%-ETI, wenn Sie nur die Spezies Adelie untersuchen?
Hinweise:
- Sie können den Datensatz z.B. hier beziehen oder über das R-Paket
palmerpenguins
. - Weitere Hinweise
Nutzen Sie die folgende Analyse als Grundlage Ihrer Antwort.
Setup:
Es wird in dieser Aufgabe vorausgesetzt, dass Sie den Datensatz selbständig importieren können. Tipp: Kurzes Googeln hilft ggf., den Datensatz zu finden.
Alternativ könnten Sie den Datensatz als CSV-Datei importieren:
<- "https://vincentarelbundock.github.io/Rdatasets/csv/palmerpenguins/penguins.csv" d_path
Ein Blick in die Daten zur Kontrolle, ob das Importieren richtig funktioniert hat:
<- data_read(d_path)
penguins <-
penguins_adelie %>%
penguins filter(species == "Adelie")
glimpse(penguins)
Rows: 344
Columns: 9
$ rownames <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1…
$ species <chr> "Adelie", "Adelie", "Adelie", "Adelie", "Adelie", "A…
$ island <chr> "Torgersen", "Torgersen", "Torgersen", "Torgersen", …
$ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, …
$ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, …
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186…
$ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, …
$ sex <chr> "male", "female", "female", "", "female", "male", "f…
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…
Vertrauen ist gut, aber – was Golems betrifft – ist Kontrolle eindeutig besser ;-)
<- stan_glm(body_mass_g ~ bill_length_mm, # Regressionsgleichung
m1 data = penguins_adelie, # Daten
seed = 42, # Repro.
refresh = 0) # nicht so viel Output
parameters(m1, ci = .95, ci_method = "eti")
Parameter | Median | CI | CI_low | CI_high | pd | Rhat | ESS | Prior_Distribution | Prior_Location | Prior_Scale |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | 22.53919 | 0.95 | -879.18205 | 913.4400 | 0.5185 | 1.000466 | 3934.802 | normal | 3700.662 | 1146.4153 |
bill_length_mm | 94.71685 | 0.95 | 71.89291 | 118.0511 | 1.0000 | 1.000492 | 3910.510 | normal | 0.000 | 430.4322 |
Lösung
Die Lösung lautet also, wie in der Ausgabe zu den Parametern ersichtlich, 46.16.